Gas Law	vs — — — — — — — — — — — — — — — — — — —
Multiple (Choice e choice that best completes the statement or answers the question.
1.	According to the kinetic-molecular theory, particles of matter a. are in constant motion. c. have different colors.
2.	 b. have different shapes. d. are always fluid. According to the kinetic-molecular theory, which substances are made of particles? a. ideal gases only b. all gases d. all matter d. all matter except solids
3.	Which is NOT an assumption of the kinetic-molecular theory? a. Matter is composed of tiny particles. b. The particles of matter are in continual motion. c. The total kinetic energy of colliding particles remains constant. d. When individual particles collide, energy is transferred.
4.	According to the kinetic-molecular theory, particles of a gas a. attract each other but do not collide. b. repel each other and collide. c. neither attract nor repel each other but collide. d. neither attract nor repel each other and do not collide.
5.	Which is an example of gas diffusion? a. inflating a flat tire b. the odor of perfume spreading throughout a room c. a cylinder of oxygen stored under high pressure d. All of the above
6.	If a gas with an odor is released in a room, it quickly can be detected across the room because it a. diffuses. c. is compressed. b. is dense. d. condenses.
7.	Which is an example of effusion? a. air slowly escaping from a pinhole in a tire b. the aroma of a cooling pie spreading across a room c. helium dispersing into a room after a balloon pops d. oxygen and gasoline fumes mixing in an automobile carburetor
8.	What happens to the volume of a gas during compression? a. The volume increases. b. The volume decreases. c. The volume remains constant. d. It is impossible to tell because all gases are different.
9.	What does the constant bombardment of gas molecules against the inside walls of a container produce? a. temperature b. density d. diffusion

Name: _____ Class: _____ Date: _____

ID: A

Name	e:				ID: A				
	10.	 Why does a can collapse when a vacuum pump removes air from the can? a. The inside and outside forces balance out and crush the can. b. The unbalanced outside force from atmospheric pressure crushes the can. c. The atmosphere exerts pressure on the inside of the can and crushes it. d. The vacuum pump creates a force that crushes the can. 							
	11.								
-		a.	barometer	c.	vacuum pump				
		b.	manometer	d.	torrometer				
	12.	Sta	andard temperature is exactly						
		a.	100°C. 1	c.	0°C.				
		b.	273°C.	d.	0 K.				
	13.	Sta	andard pressure is exactly						
		a.	1 atm.	c.	101.325 atm.				
		b.	760 atm.	d.	101 atm.				
	14.	Pre	essure and volume changes at a c	onstant tempera	ature can be calculated using				
		a.	Boyle's law.	c.					
		b.	Charles's law.	d.	Dalton's law.				
	15.	Ga	y-Lussac recognized that at cons	e and pressure, the volumes of gaseous reactants and					
		pro	oducts						
		a.	always equal 1 L.						
		b.	add up to 22.4 L.						
		C.	equal R.	11 1 1					
	1.0	d.	can be expressed as ratios of sr						
	16.	6. When Gay-Lussac's law of combining volumes holds, which of the following can be expressed in rasmall whole numbers?							
				tar reaction					
		a. b.	pressure before and pressure at volumes of gaseous reactants a						
		c.	Kelvin temperatures	na products					
		d.	molar masses of products and r	reactants					
	17		ume of hydrogen yields have many valumes of hydrogen						
	17.	In the equation $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$, one volume of hydrogen yields how many volumes of hydrogen chloride?							
		a.	1	C.	3				
		b.	2	d.					
	18.								
		a.	L·atm	c.	I. atm				
		b.	mol·K	d.	$\frac{atm}{K}$				
	19.	In a chemical equation, the coefficients for reactants and products that are gases indicate							
		a.	volumes at STP.	C.	molar mass of each substance.				
		b.	volume ratios.	d.	densities.				
	20.	Wh	at law helps explain the volume	ratios in a chem	ical reaction?				
		a.	Charles's law	C.	Boyle's law				
		b.	Graham's law	d.	Gay-Lussac's law of combining volumes				

	21.	In the reaction $2C + O_2(g) \rightarrow 2CO(g)$, what is t	he v	olume ratio of O ₂ to CO?
		a. 1:1	C.	1:2
		b. 2:1	d.	2:2
	22.	What is the number of moles of H ₂ produced wh	nen 2	23 g of sodium react with water according to the equation
		$2\text{Na}(s) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{NaOH}(aq) + \text{H}_2(g)$?		
		a. 0.50 mol	C.	2 mol
		b. 1 mol	d.	4 mol
	23.	Chlorine is produced by the reaction $2HCl(g)$	→ H ₂	(g) + Cl2(g). How many grams of HCl (36.5 g/mol) must be
		used to produce 10 L of chlorine at STP?		
		a. 15.8 g	C.	32.6 g
		b. 30.2 g	d.	36.5 g
24. What is the process by which molecules of a gas randomly encounter and pass through a s				domly encounter and pass through a small opening in a
		container?		
		a. diffusion	C.	distillation
		b. osmosis	d.	effusion
	two gases at the same temperature and pressure are			
		inversely proportional to		
		a. their volumes.	C.	their compressibilities.
		b. the square roots of their molar masses.	d.	their rates of effusion.
	26.	What determines the average kinetic energy of the	ne m	olecules of any gas?
		a. temperature	C.	temperature and pressure
		b. pressure	d.	molar mass

Gas Laws Answer Section

MULTIPLE CHOICE

1.	ANS:	A	PTS:	1
2.	ANS:	\mathbf{C}	PTS:	1
3.	ANS:	D	PTS:	1
4.	ANS:	C	PTS:	1
5.	ANS:	В	PTS:	1
6.	ANS:	A	PTS:	1
7.	ANS:	A	PTS:	1
8.	ANS:	В	PTS:	1
9.	ANS:	\mathbf{C}	PTS:	1
10.	ANS:	В	PTS:	1
11.	ANS:	A	PTS:	1
12.	ANS:	\mathbf{C}	PTS:	1
13.	ANS:	A	PTS:	1
14.	ANS:	A	PTS:	1
15.	ANS:	D	PTS:	1
16.	ANS:	В	PTS:	1
17.	ANS:	В	PTS:	1
18.	ANS:	C	PTS:	1
19.	ANS:	В	PTS:	1
20.	ANS:	D	PTS:	1
21.	ANS:	C	PTS:	1
22.	ANS:	A	PTS:	1
23.	ANS:	C	PTS:	1
24.	ANS:	D	PTS:	1
25.	ANS:	В	PTS:	1
26.	ANS:	A	PTS:	1